Search results for "Binuclear complex"

showing 3 items of 3 documents

Designing binuclear transition metal complexes: a new example of the versatility of N,N′-bis(2-aminobenzyl)-4,13-diaza-18-crown-6

2005

[Abstract] N,N′-Bis(2-aminobenzyl)-4,13-diaza-18-crown-6 (L) is a versatile receptor able to adapt to the coordinative preferences of different metal cation guests. With first-row transition metal ions, L tends to form binuclear complexes but, depending on the nature of the particular metal ion, the structure of the binuclear complex may be very different. Herein we report a study of the structure and magnetic properties of the corresponding nickel(II) and cobalt(II) complexes. The X-ray crystal structure of the nickel complex (1), with formula [Ni2(L)(CH3CN)4](ClO4)4·CH3CN, shows that this compound presents a symmetric coordination environment with L adopting an anti arrangement. Each Ni(I…

Models MolecularMetal ions in aqueous solutionCoordination numberchemistry.chemical_elementCrystal structureCrystallography X-RayInorganic Chemistrychemistry.chemical_compoundMagneticsMacrocyclic ligandsTransition metalNickelCationsCrown EthersOrganometallic CompoundsCrown ethersAza Compounds18-Crown-6TemperatureBinuclear complexesCobaltCrystallographyNickelchemistryOctahedronCrystal structuresTransition-metal complexesCobalt
researchProduct

NaI/CuI–II heterometallic cages interconnected by unusual linear 2-coordinate OCN-Cu(I)-NCO links: synthesis, structural, magnetostructural correlati…

2009

A new Na(I)/Cu(I-II) heterometallic coordination complex [Cu(2)L(2)Na(NCO)(2)Cu](n) (1) with an unusual architecture has been synthesised. In 1 cyclic Na-O-Cu-O-Cu cages constructed by the tetradentate N(2)O(2) donor Schiff base ligand (H(2)L = N, N'-bis(2-hydroxyacetophenone) propylenediimine) are interconnected to each other by a rare singly end-to-end bridged OCN-Cu(I)-NCO link generating 1D chain. The complex has been characterised by elemental, spectral and structural analysis. The cyclic voltammogram of 1 has been compared with the analogous complexes. Cryomagnetic susceptibility studies indicate the copper(II) centers in the cyclic Na-O-Cu-O-Cu cages are antiferromagnetically coupled…

StereochemistryDinuclear Copper(Ii) Complexeschemistry.chemical_elementNickel(Ii) ComplexesCrystal structureMagnetic-PropertiesCoordination complexInorganic ChemistryMetalchemistry.chemical_compoundCarbon-Dioxide FixationCrystal-StructuresMoleculeSchiff-Base ComplexesBinuclear ComplexesMolecular-Structurechemistry.chemical_classificationSchiff baseLigandExogenous BridgesCopperCrystallographychemistryvisual_artX-Rayvisual_art.visual_art_mediumDensity functional theoryDalton Transactions
researchProduct

Synthesis, crystal structure and magnetic properties of a new cyanide-bridged mixed-valence copper(I)/copper(II) clathrate

2013

A unique cyanide-bridge mixed-valence CuI/CuII clathrate of formula [CuI2(CN)3][{CuII(tren)}2(μ-CN)](CF3SO3)2 [tren = tris(2-aminoethyl)amine] containing cyanide-bridged [{CuII(tren)}2(μ-CN)]3 + binuclear cations stacked between anionic honeycomb layered copper(I) cyanide networks, was synthesized and structurally characterized by single crystal X-ray diffraction. Variable-temperature magnetic susceptibility studies showed that the cyanide bridge mediates a strong antiferromagnetic interaction between the copper(II) centers (J = − 160 cm− 1, the spin Hamiltonian being defined as H = − JSA⋅SB).

Cyanide bridgeMixed-valence copper(III) complexesValence (chemistry)Binuclear complexCyanideInorganic chemistrychemistry.chemical_elementCrystal structureMagnetic susceptibilityCopperInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryCrystal structuresMagnetic propertiesMaterials ChemistryAntiferromagnetismAmine gas treatingPhysical and Theoretical ChemistrySingle crystalInorganic Chemistry Communications
researchProduct